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Abstract—Sign language translation (SLT) is usually seen as a
two-step process of continuous sign language recognition (CSLR)
and gloss-to-text translation. We propose a novel, Transformer-
based architecture to jointly perform CSLR and sign-translation
in an end-to-end fashion. We extend the ordinary Transformer
decoder with two channels to support multitasking, where each
channel is devoted to solving a particular problem. To control
the memory footprint of our model, channels are designed to
share most of their parameters with each other. However, each
channel still has a dedicated set of parameters that is fine-tuned
with respect to the channel’s task. In order to evaluate the
proposed architecture, we focus on translating German signs
into English sequences and use the RWTH-PHOENIX-Weather
2014 T corpus in our experiments. Evaluation results along with
detailed quantitative and qualitative analyses indicate that the
mixture of information provided by the multitask decoder was
successful and enabled us to achieve superior performance in
comparison to other SLT models.

Index Terms—Sign Language Translation, Multitasking, End
to end learning

I. INTRODUCTION

Sign languages (SLs) are the main medium of communi-
cation for people with hearing problems. In such languages,
linguistic phenomena are in conjunction with other factors such
as body movements, poses, and facial expressions. Accordingly,
existing tools designed to process spoken languages are not
directly applicable to SLs. It involves translating sign videos
to a target language and this makes this task relatively harder
compared to traditional Neural Machine Translation (NMT). In
this paper, we particularly focus on translating these languages
and propose a tailored solution to interpret signs from video
frames and translate them into text sequences in a target
language.

One approach to SLT is to view the process as a combi-
nation of three tasks, viz. sign segmentation, sign language
recognition (SLR), and gloss-to-word translation. In text
sequences, punctuation marks and white spaces help segment
them into fundamental units. Silent regions namely pause,
between phonemes play the same role in speech processing
tasks [1]. However, the task of segmentation is not very
straightforward when working with SLs and an SL processing
task may require some sort of segmentation [2], [3]. The
purpose of sign segmentation is to be clear about the input
units, and their boundaries, and see how to feed the model.
Once the segmentation is completed, the next step would be
understanding/recognizing information carried out by signs,
which is referred to as SLR in the literature. What SLR
generates is a sequence of special tokens known as sign

language glosses. The final step, translation, takes glosses
and transforms them into words in the target language.

Performing each of these tasks separately requires dedicated
models and datasets, which would be quite challenging. [4]
proposed a much simpler and more effective solution. They
treated the aforementioned three-step pipeline as an end-to-
end process of transforming video frames into target-language
words and show that their approach can in fact outperform
other conventional methods. In their model, SLT is carried out
via a single neural network and there is no clear step defined
for segmentation or SLR. The network, itself, decides how to
set boundaries and use information stored in video frames to
accomplish the task.

Our approach to performing SLT is also to develop an
end-to-end model. We propose a Transformer [5] model
which relies on multitasking. Similar to [4], we do not feed
our model with segmented units and let the network decide
how to process the video frames. However, on the target side
(i.e, on the decoder side), we explicitly force the model to
i) generate sign glosses and ii) transcribe source signs into a
target language. This form of training defines a better objective
for the network, and it clearly learns what input video frames
are processed and how internal representations should be
generated in order to serve the target tasks. [4] and other
similar models only provide the network with one generic
task/objective (to perform SLT), whereas we decompose it
into more tangible and detailed goals, and this is the main
distinctive feature of our model.

Our aim for using multi-task learning is based upon
exploiting the representation bias in the dataset, which helps
the model to learn better internal representations that related
tasks might prefer. Specifically, our proposed method is based
on the hard parameter sharing paradigm for multi-tasking
[6], where tasks specific layers are placed after the hidden
shared layers. For a fair comparison with our proposed hard
parameter sharing-based model, we also train a baseline model
(DSEP + +), which implements the soft parameter sharing
paradigm of the multi-task learning framework.

Our main contributions can be summarized as follows:
• Exploiting available gloss sequence at both encoder and

decoder side effectively, which performs better than the
prior state-of-the-art [4]. In the unavailability of gloss
sequence, We use a multitasking objective, where besides
decoding the source sign into a fixed target language (i.e,
German); we also translate the source sign into a different



target language (i.e, English). To train our decoder, we
translate target-side German sentences into English via
an NMT model. This auxiliary multitasking objective
outperforms the baseline Transformer.

• Our proposed approach is task agnostic and similar
multitasking objectives can be applied to the other tasks
as well.

II. RELATED WORK

The SLT systems were introduced in the early 2000s [7]
where language models were used to construct sentences by
recognizing the isolated signs [8]. However, there was no
sign of directly converting videos into sentences, i.e. end-to-
end SLT system until recently. For the SLT system, a large
annotated dataset is required but the creation and annotation of
sign videos is a laborious task. A few datasets from linguistic
sources [9], [10] and broadcast interpretation [11] are available
which are either weak (subtitles) or have very few samples to
build models which would work on a large domain of discourse.

The CSLR methods [12], [13] (designed to learn
from weakly annotated data) were infeasible, as re-
searchers assumed that sign videos and their annotations
share the same temporal order. With the creation of SL
datasets such as RWTH-PHOENIX-Weather 2012 [14],
RWTH-PHOENIX-Weather 2014 [15], or KETI [16] made
it possible for the researchers to directly work on video frames
and invent models to interpret signs/meanings residing in them.

SLR models utilized convolutional modules to encode the
video frames and recurrent mechanisms to capture temporal
structures and dependencies in between frames [12], [17]. SLT
models also benefited from similar technologies for translating
information into actual sentences [18], [19]. Researchers
customized this pipeline based on their own needs, e.g.
[16] augmented network inputs with key points extracted
from human faces, hands, and body parts. [20] proposed the
connectionist temporal classification (CTC) loss which is useful
when working with weakly annotated datasets. Due to its
success, CTC quickly turned into a mainstream loss function
in sequence-to-sequence applications. [4] embedded the CTC
loss into Transformers [5] to learn the continuous sign language
recognition and translation. Though recent methods like [21]
propose reasonable breakthroughs for SLT, they either do not
perform recognition and translation jointly or are very complex
to be applicable to other similar tasks.

III. METHODOLOGY

Current state-of-the-art for SLT [4] relies on a Transformer-
based architecture 1 in which the encoder is fed with sign video
frames and the decoder produces translations conditioned on
encoder’s representations. In this framework, the encoder is
trained to act as a gloss generator and this makes it possible to
perform SLR and SLT simultaneously. Our model also follows
a similar process but via a different and better architecture.

1We assume that the reader is familiar with Transformers so we skip related
details.

While our best-performing model implements the same
encoding process as in [4], our decoder is equipped with
a multitasking strategy where SLT is decomposed into two
tasks of i) sign-to-spoken language conversion where source
(German in our case) signs are converted to the source tokens.
Then we have ii) gloss sequence prediction that provides
additional annotations to facilitate the SLT process. In case
of the unavailability of gloss annotations, a complementary
second task is proposed, where we translate source signs into
a target language. Figure 1 illustrates the high-level design of
our architecture.

As the figure shows, the decoder has three channels, namely
Dts, Dg , and Dtr for transcribing input frames and generating
gloss tokens and translation, respectively. Each of the channels
is structurally the same as a Transformer decoder layer. All
these channels share parameters of their first n blocks with each
other. This feature helps us control the memory footprint of our
model. Moreover, exchanging information between channels
yields richer internal representations. In addition to those n
blocks, each of Dg and Dtr has one additional block whose
parameters are not shared. Therefore, both Dg and Dtr have n+
1 and Dts has n blocks. Dedicated blocks are designed to reach
better performance and mitigate the complexity of multitasking.
It is to be noted that the best-performing architecture does not
train Dg and Dtr simultaneously. Also, we only train Dtr to
facilitate our complementary translation task, when we can
not train Dg due to the unavailability of gloss sequences.
The following sections describe the encoding and decoding
process of our proposed model.

A. Encoding Sign Videos

The encoder takes a sign-video V as its input. We segment
V into frames [f1, f2,...,fF ], then each frame is spatially
embedded using a particular Inception network [22] which
is pre-trained and fine-tuned convolutional model for the
SLR purposes [23]. Intermediate embeddings generated by
the convolutional module are then passed through batch
normalization and rectified linear units [24] in order to enrich
internal representations. The impact of these units and how they
boost the test-time performance are comprehensively discussed
in [4].

Transformers are non-recurrent networks, so in order to
maintain the temporal order of frames we augment embeddings
with position information, as shown in Equation 1:

It = CNN(ft)

Ît = It + PosEmb(t)
(1)

where CNN(.) refers to the convolutional model and PosEmb(t)
is the embedding correlates with the t-th time step. This process
is identical to positional encoding proposed by [5]. Ît is an
intermediate representation that consists of intra-frame spacial
and inter-frame positional information. Each processed frame
Ît is passed through multiple encoder blocks and is transformed
into an output vector zt, as shown in Equation 2:

zt = Encoder(Ît) (2)



Fig. 1. Left: The architecture of an ordinary transformer decoder. Right: The architecture of the proposed model relies on a triple-channel decoder. Dtr and
Dg denote two dedicated decoder blocks for translating input sequences into the target language (English) and gloss sequences, respectively. Aside from these
two channels, there is a third one, namely Dts, which transcribes the input and generates real German words. The backbone of Dtr and Dg channels are
shared and they only differ in the last block, i.e. the first n blocks but the last dedicated ones are shared in between channels. Therefore, each of Dtr and Dg

have n shared and 1 dedicated blocks. Dts has only n blocks with no additional, dedicated block and all its n blocks share parameters with other channels.
The encoder part follows the same architecture as [4].

1) Enriching Encoder Representations: Our Encoder serves
as a strong, multi-channel decoder so it is supposed to provide
as rich information as possible. In our experiments, we realized
that only encoding sign videos is not sufficient enough and
we need a more explicit way of teaching the encoder about its
role and the form of representations it should learn. To this
end, we tried to inject gloss-level information by forcing the
encoder to generate gloss labels in addition to its main task.
In other words, we treat the encoder as a sequence labeller
to solve the P (G|V ) problem, with G being a sequence of
glosses. The encoder consumes video frames and it generates
which glosses are related to those frames. This is an ordinary
sequence-to-sequence problem which can be solved via an
ordinary loss function such as cross-entropy. However, framing
the problem that way requires an accurately-labelled dataset,
which is not practical in our setting. Instead, we use the CTC
loss which provides weaker supervision but satisfies our needs.

The log-likelihood of a gloss sequence given the input frames
can be computed as shown in Equation 3:

log pθ(G|V ) = log
∑

a∈β−1(G)

pθ(a|V ) (3)

where θ is a set of all encoder parameters and β(G) returns
all the possible alignments. For more details about the fun-
damentals of CTC and gloss-frame alignments, see [20] and
[4], respectively. Computing pθ(G|V ) is intractable, and so the
summation in the equation can be simplified as in Equation 4:

pθ(a|V ) =
∏
i

p(ai|V ; θ) (4)

where frame-level gloss probabilities are directly obtained from
the encoder, which is connected to a Softmax function through

a projection layer in our architecture.

B. Multi-Channel Decoding

Our decoder is essentially a Transformer-based sequence
generator and follows the same structure as other ordinary
decoders [5]. Therefore, it is a stack of Transformer blocks with
all the positional encoding, masking, self-attention, encoder-
decoder attention, position-wise feed-forward, and layer-norm
components. We are also faithful to the original configuration
of these components.

Although the main skeleton of our decoder relies on
Transformers, ours has multiple output channels instead of
one. The first channel Dts transforms the video information to
source-side words and can be used as a transcriber. Essentially,
Dts is used to generate German sentences corresponding to
source sign videos. Finally, the second channel denoted by
Dg decodes the gloss sequences. These channels exchange
information among each other through shared parameters and
this helps the decoder be aware of the target language, source
language, and auxiliary annotations about the input frames
at the same time, and we show empirically this is the main
origin of our model’s superiority. A natural question arises
if the gloss sequences are unavailable, our proposed model
is essentially a transformer architecture which cannot exploit
gloss sequences both on the encoder and decoder sides. In
that case, the second channel of the decoder, Dg is useless.
To alleviate this issue, we use a separate channel Dtr in place
of Dg which is to be used for the generation of target tokens
corresponding to the input video frames in another language
other than the language in which Dts is trained on. (for our
dataset, we generate sentences in English via Dtr, which are
machine translated from the available German sentences).



We follow the structure as shown in Figure 1 to implement
our decoder. Each channel of the decoder is trained by
computing the cross-entropy loss of its generated tokens, as
shown in Equation 5:

LCH = 1−
T∏

t=1

LCH∑
l=1

p(ŵl
t)p(w

l
t|st)

CH = {Dtr, Dts, Dg}

(5)

where wl
t denotes the probability distribution of the l-th target

token at time step t whose ground-truth label is provided by
ŵl

t. Each channel generates a different token, e.g. w is a target-
language token for Dtr, whereas Dg works with glosses. LCH

shows the length of the vocabulary side that each channel
works with. st is the internal state of the decoder which is
computed as shown in Equation 6:

st = Decoder(wt−1|w1:t−1, z1:F ) (6)

As the equation shows, the generation of each token at
a particular time step is conditioned on all the previously
generated target words (w1:t−1 ) as well as the encoder’s
outputs (z1:F ) for the input video segment.

According to Equation 5, each channel has a dedicated
loss. We also define an auxiliary loss for the encoder (Lenc).
Therefore, the final loss for training our model is a composition
of four loss terms, as shown in Equation 7:

L = λtrLDtr
+ λtsLDts

+ λgLDg
+ λencLenc (7)

λ assigned to each loss is a weight to control the contribution
of each loss to the translation process.

IV. EXPERIMENTAL STUDY

A. Datasets

To train our models and in the interest of fair compar-
isons, we selected the RWTH-PHOENIX-Weather 2014 T
dataset2 [25]. It contains the sign language videos along with
their gloss annotations and translations in German.

To train our proposed model in the unavailability of the
gloss sequences, we extend their train set by translating
German spoken language sentences into English. For translation,
we make use of the NMT system developed as a WMT-19
submission by [26]3. We provide an example from our training
set in Table I.
Firstly, we normalize punctuation & tokenize our target side of
the dataset. Following tokenization, we use Byte Pair Encoding
Scheme (BPE) [27], as currently used by almost all state-of-
the-art NMT systems, to pre-process the target side of our
dataset. This solves the problem of out-of-vocabulary (OOV)
words in the test set as BPE encodes unknown words as a
sequence of sub-words.

2Link: RWTH-PHOENIX-Weather 2014 T
3WMT19 Fairseq

B. Experimental Setup

With a specific set of model hyper-parameters, we perform all
the experiments. We did not use any specific hyper-parameter
optimizer for finding the optimal set of hyper-parameters. The
following set of hyper-parameters is chosen.
We use batch_size = 32, num_enc = 3, num_dec = 3,
λenc = 5.0, λg = 0.7 and num_attention_heads = 8) to
train and test our models. For all the experiments, we set
λts = 1.0. Note that the best-performing model setup assigns
λtr = 0 in the availability of gloss sequence (ref. Table III).
Adam [28] is used as the optimizer to train the models with an
initial learning rate of 10−3 (β1=0.9, β2=0.998) and a weight
decay of 10−3. We use plateau learning rate scheduler which
tracks the development set performance. We evaluate our model
on the development set after every 200 iteration of training
steps and if the BLEU-4 score ( [29]) does not increase for 15
evaluation steps, the learning rate is reduced by a factor of 0.7
until it reaches 10−7, after which the training is stopped. While
testing our proposed model, we use beam search to decode the
target tokens with a fixed beam width of 5.
Our model has a performance score of 22.4 ± 0.2 BLEU-4
over a range of choices for λg (c.f. Table V; with fixed no
of the encoder and decoder layers of 3, λenc = 5.0, λtr = 0,
λts = 1.0). Though we report only the best performance score
of 22.59 BLEU-4 score, the lowest performance of 22.2 is still
better than the state-of-the-art score proposed in [4], which is
21.32.

C. Baseline Models

We design two baseline models for our experiments. The
design decision is based on the premise that we do not use any
gloss-level supervision while training the baseline models. This
entails having a fair comparison with our proposed architecture
which uses gloss-level annotations for training.

1) Ordinary Transformer Network: We train an ordinary
transformer model by setting hyper-parameters associated with
the joint loss term (see equation 7) λenc, λg, λtr to zero. It
alleviates any gloss-level supervision and our triple-channel
decoder works as a single decoder which directly decodes
German spoken language sentences from the sign language
videos. This model has the poorest performance of a 20.52
BLEU-4 score.

2) Separate Decoder Networks (DSEP and DSEP++):
Instead of our proposed model, which is equipped with
multitasking by exploiting a shared decoder representation via
Dg, baseline model DSEP has two separate decoders which
do not share any information with each other. In Figure 2,
DecT and DecG refer to two separate decoders which use the
same encoder representation to predict the target sequence
and gloss sequence from the input sequence, respectively.
DecT and DecG are respectively complementary to that of
Dts and Dg in our proposed model. As the decoders in this
architecture (DSEP ) do not share any previous decoder layers
as our proposed architecture does, this baseline model suffers
from weak supervision of gloss annotations and thus performs
somewhat poorly (BLEU-4 score of 20.90) compared to our

https://www-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX-2014-T/
https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md


TABLE I
AN EXAMPLE FROM THE RWTH-PHOENIX-WEATHER 2014 T DATASET USED FOR TRAINING.

Gloss NORDWEST HEUTE NACHT TROCKEN BLEIBEN SUEDWEST KOENNEN REGEN ORT GEWITTER DAZU
Text im nordwesten bleibt es heute nacht meist trocken sonst muss mit teilweise kräftigen schauern gerechnet werden örtlich mit blitz und donner

Signer Signer08
Name train/11August_2010_Wednesday_tagesschau-5

Sign Video . . . .
English Translation In the northwest, it will remain mostly dry tonight, with some heavy showers expected with thunder and lightning

TABLE II
COMPARISON BETWEEN BASELINE MODELS. For more about our baseline models, see section IV-C

Tasks DEV TEST
Sign to Text w/o gloss supervision BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-1 BLEU-2 BLEU-3 BLEU-4

Sign2Text [4] 45.54 32.60 25.30 20.69 45.34 32.31 24.83 20.17
Sign2Text (with label smoothing) 45.43 32.67 25.38 20.74 45.45 32.68 25.24 20.52

DSEP 44.52 31.96 25.00 20.58 45.17 32.82 25.45 20.90
DSEP ++ 46.55 34.08 26.50 21.63 46.56 34.04 26.39 21.59

TABLE III
COMPARISON BETWEEN STATE-OF-THE-ART AND OUR MODEL. HERE, Tλenc

λg,λtr
DENOTES OUR PROPOSED ARCHITECTURE. FOR DIFFERENT VALUES OF

λenc , λg AND λtr , WE TABULATE THEIR EFFECTS ON TEST BLEU-4 SCORE. WE SHOW THREE OF OUR BEST RESULTS AND TABULATE THEM ACCORDINGLY.
For all experiments, we set λts = 1.0. T 5.0

0.0,0.0 REFERS TO OUR RE-IMPLEMENTATION OF STATE-OF-THE-ART ARCHITECTURE [4] WITH THE SAME
TRAINING SETTING DESCRIBED IN [4]

Tasks DEV TEST
Sign to Gloss to Text BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-1 BLEU-2 BLEU-3 BLEU-4
Sign2Gloss2Text [4] 47.73 34.82 27.11 22.11 48.47 35.35 27.57 22.45

Sign2Gloss → Gloss2Text [4] 47.84 34.65 26.88 21.84 47.74 34.37 26.55 21.59
End-to-End Sign to (Gloss+Text) BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-1 BLEU-2 BLEU-3 BLEU-4
Recog. Sign2(Gloss+Text) [4] 46.56 34.03 26.83 22.12 47.20 34.46 26.75 21.80
Trans. Sign2(Gloss+Text) [4] 47.26 34.40 27.05 22.38 46.61 33.73 26.19 21.32

T 5.0
0.0,0.0 [4] 45.03 32.31 24.92 20.26 46.66 33.20 25.81 21.07

T 5.0
0.7,0.0 (Proposed Model) 48.01 35.46 27.94 23.05 47.59 35.16 27.60 22.59

proposed model with λenc = 0 (BLEU-4 score of 21.08).
When equipped with encoder side gloss sequence decoding,
by setting λenc = 5.0, the performance of DSEP is increased
to 21.59. We call this enhanced DSEP as DSEP++

D. Results & Comparisons

Sign to Text tasks with gloss supervision can be divided into
two parts, namely Sign2Gloss2Text and Sign2 (Gloss+Text).
We discuss these briefly and compare them with our proposed
method.

1) Models with mid-level gloss supervision: Sign2Gloss2Text
uses intermediate gloss level representation. It is a two-step
process. The first step uses a CSLR (Continuous sign language
recognition) model to generate the gloss sequences correspond-
ing to a sign video. In the second step, the generated glosses
are fed to train an NMT model which acts as a Gloss2Text
translator, translating gloss sequences into a sequence of spoken
language words. A variation of Sign2Gloss2Text is known as
Sign2Gloss → Gloss2Text. This is similar to Sign2Gloss2Text,
but instead uses the best performing Gloss2Text network instead

of training it from the scratch. For both of these architectures,
we list the state-of-the-art scores in Table III.

2) End-to-End models: The second category of tasks
(Sign2(Gloss+Text)) essentially refers to learning both the gloss
sequences and textual representations jointly, as done in [4].
Our model is an extension of the approach used in [4]. Table
III shows that our model with best-performing setup obtains a
BLEU-4 score of 22.59, which is 0.79 absolute increase from
the score of 21.80 obtained by [4] for Sign2(Gloss+Text) tasks.
The improvement was found to be statistically significant over
the prior state-of-the-art using bootstrap hypothesis testing 4 to
test the Null Hypothesis (H0) that the same system generated
the two hypothesis translations, using the technique utilized
in [4] and our proposed method. At 95% confidence level, P-
Value comes out as 0.029. This entails that H0 can be rejected,
subsequently firming the claim that our method is better than
the existing state-of-the-art.

4Bootstrap Hypothesis Testing

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/analysis/bootstrap-hypothesis-difference-significance.pl


TABLE IV
SOME EXAMPLES FROM OUR BEST PERFORMING MODEL (T 5.0

0.7,0.0) AND ITS COMPARISON WITH OUR RE-IMPLEMENTATION OF THE STATE-OF-THE-ART

MODEL (T 5.0
0.0,0.0) FROM [4]. Reference SHOWS THE GROUND TRUTH REFERENCE TRANSLATIONS.

Ours die gewitter fällt dann nur im westen und nordwesten können sich die mitunter unwetterartig ausfallen können .
(The thunderstorm then only falls in the west and northwest, which can sometimes turn out like a storm.)

SOTA sonst kaum noch schauer und gewitter nur im westen auch mal längere zeit klar .
(otherwise hardly any showers and thunderstorms only clear in the west for a long time.)

Reference zunächst ist das gewitterrisiko nur im westen erhöht von tag zu tag steigt es aber auch richtung osten .
(Initially, the risk of thunderstorms is only increased in the west, but it also increases in the east from day to day.)

Ours orgen vormittag wird es dann immer noch schauer im osten und auch kräftig regnen in brandenburg gibt es noch einzelne schauer .
(Tomorrow morning there will still be showers in the east and there will also be heavy rain in Brandenburg.)

SOTA morgen vormittag regnet es dann zwischen dreizehn im osten dagegen nur dreizehn und südosten haben wir noch kräftig sein .
(Tomorrow morning it will rain between thirteen in the east on the other hand only thirteen and in the southeast we still have to be strong.)

Reference morgen vormittag bleibt von dem ganzen starken regen noch hier im osten einige gewitter hängen in brandenburg starker regen in vorpommern und an der ostsee .
(Tomorrow morning from all the heavy rain there will still be some thunderstorms hanging here in the east in Brandenburg, heavy rain in Western Pomerania and on the Baltic Sea.)

Ours hoher luftdruck bestimmt unser wetter .
(high air pressure determines our weather.)

SOTA im norden machen sich währenddessen tiefausläufer bemerkbar der in der neuen woche .
(In the north, meanwhile, low levels are noticeable in the new week.)

Reference das hoch das sich richtung osteuropa verlagert bestimmt auch in den kommenden tagen unser wetter .
(The high that is moving towards Eastern Europe will definitely change our weather in the coming days.)

Ours der wind weht schwach bis mäßig .
(the wind blows weak to moderate.)

SOTA auch sonst weht der wind schwach bis mäßig .
(otherwise the wind blows weak to moderate.)

Reference in deutschland gibt es nur schwache luftdruckunterschiede .
(in germany there are only slight differences in air pressure.)

Ours am freitag wechselhaftes wetter .
(changeable weather on friday.)

SOTA am freitag hier und da etwas regen .
(A little rain here and there on Friday.)

Reference am freitag wechselhaftes schauerwetter .
(changeable rainy weather on friday.)

Fig. 2. Architecture of our baseline model with one encoder and two separate
decoders. Here, f1, f2,......,fn are the spatial representation of the video frames
obtained from the pre-trained CNN. DecT and DecG denote two separate
decoders for decoding text and gloss sequence, respectively. For Sign2Text
experiments, we drop DecG.

E. Ablation experiments

The performance of our proposed architecture depends on
the choice of the weights (λenc, λtr, λg) associated with
the loss term (7) used to train our model. We perform an
ablation study to show the effect of hyper-parameter variations.
Firstly, we consider our baseline models and consider how
their performance changes if the gloss-level supervision at the
encoder side (c.f III-A1 ) is added. Secondly, we consider our
proposed model and compare it with their baseline counterparts.

We can conclude the following based on Table V. The
model without any gloss-level supervision (T 0.0

0.0,0.0) has the
lowest BLEU-4 score of 20.52. Gloss-level supervision using a
separate decoder network (DSEP ) boosts the baseline accuracy
from 20.52 to 20.90. Training DSEP + + which uses the

TABLE V
COMPARISON BETWEEN PROPOSED MODELS WITH DIFFERENT

LOSS WEIGHTS. Tλenc
λg,λtr

DENOTES OUR PROPOSED
ARCHITECTURE.

Models METRICS
Models for Sign2(Gloss+Text) BLEU-4 ROUGE

T 0.0
0.0,0.0 20.52 45.92

T 0.0
0.0,0.5 20.79 47.03
DSEP 20.90 46.41
T 5.0
0.0,0.0 21.07 46.00
T 0.0
0.7,0.0 21.08 46.06

DSEP ++ 21.59 47.69
T 5.0
0.7,0.2 22.05 48.25

T 5.0
0.7,0.0 22.59 48.82

architecture from DSEP along with an added objective of
enriching encoder representation (refer to Section III-A1) could
subsequently increase the performance of DSEP from 20.90
to 21.59. Following this increasing trend of performance we
hypothesize that adding gloss-level supervision, both at the
encoder and decoder side, is the most useful multitasking
approach to follow.
We follow the previous experiments using our proposed
model. Our baseline DSEP uses extra supervision from gloss
sequences employing two separate decoders, implementing
a soft parameter-sharing paradigm for multitasking. For a
fair comparison with DSEP , we run our proposed model
which implements a hard parameter sharing paradigm of multi-



Fig. 3. T-Sne Visualization of the embedding of the generated translations using our model and state-of-the-art model and their comparison with ground truth
reference text. Note that each dot represents a sentence as a two-dimensional projection. For visualization, we embedded candidate sentences using Multilingual
Universal Sentence Encoder. 2-dimensional projection is done using T-SNE. For a proper understanding of what each of the sub-figures refers to, visit Section V

tasking (T 0.0
0.7,0.0). This uses a shared backbone of n layers of

the decoder and 2 task-specific decoder layers. It boosts up
the performance of DSEP from 20.90 to 21.08, subsequently
showing that using representation from shared layers could
boost multitasking performance when compared to separately
obtained representations. T 5.0

0.7,0.0 denotes our proposed model
with an added objective of training the encoder with an auxiliary
loss Lenc, thereby setting λenc = 5.0. It gives a huge boost in
terms of the BLEU-4 score. This achieves the new state-of-
the-art score of 22.59, with an impressive ROUGE score of
48.82.
Note that our re-implementation of the state-of-the-art [4]
(T 5.0

0.0,0.0) and our proposed model with a decoder-only multi-
tasking (T 0.0

0.7,0.0) have the similar performance, thereby firming
our belief that exploiting gloss sequence in the target side is
as useful as it is for the source side. Though our dual channel
decoder has a dedicated channel (Dtr) for German to English
translation, training it with Dg and Dts harms the overall
performance (by setting λtr = 0.2)5. When gloss annotations
are unavailable, we can use German-to-English translation as a
proxy task to improve the baseline performance. It is facilitated
by only training two channels, Dtr and Dts. T 0.0

0.0,0.5 surpasses
the performance of the baseline Sign2Text model (+0.27 and
+1.11 improvement in BLEU-4 & ROUGE scores).
The marginal improvement could be attributed to noisy
machine-translated data used to train Dtr.

F. Human Evaluation

We appointed two in-house annotators to manually score
100 randomly chosen translations from our proposed model
and SOTA model [4] across both Fluency and Adequacy (both
rated between 1 or 2 or 3). Fluency refers to how grammatically
accurate the generated sentences are and Adequacy refers to the
meaning preservation of the generated sentence with respect to
the reference sentence. We obtain the fluency of the proposed
model’s output to be 2.66 which is higher than the fluency of
SOTA at 2.5. Similarly, our proposed model also beats SOTA
in terms of adequacy. We obtain an average adequacy score of
2.16 for our proposed model, higher than the 1.83 adequacy
score obtained by the SOTA model. Note that these statistics

5For comparison, see BLEU-4 score of T 5.0
0.7,0.2 and T 5.0

0.7,0.0 in Table V

are averaged across annotations given by the two annotators
across the randomly chosen 100 sentences.

V. T-SNE VISUALIZATION

To visualize how our proposed method improves over
proposed state-of-the-art by [4], we perform a t-sne [30] Visu-
alization of the embeddings obtained by projecting translated
sentences via Multilingual Universal Sentence Encoder (MUSE)
[31]. In the leftmost part of Figure 3, we illustrate the overlap
between the translation embedding obtained from our model to
that of the reference translation embedding. In the middle part,
we show an overlap between translation embedding obtained
from the State-of-the-art method by [4] to that of the reference.
In the rightmost part, we show an overlap between translation
embedding obtained from our proposed method by translation
embedding.
We observe that embeddings obtained from our model trans-
lations are highly dispersed and fit the reference translation
embeddings well compared to the state-of-the-art. Thus, visu-
ally, we can infer the better quality of translations obtained
from our model.

VI. CONCLUSION

In this paper, we have proposed a transformer-based novel
architecture to perform the task of CSLR and SLT in an end-to-
end fashion. The findings of this research can be summarized
below:

• Exploiting intermediate sequences in an end-to-end fashion
(e.g. gloss sequences) can be an effective approach to
training the SLT models.

• If the gloss sequences are available, we can use related
tasks as a proxy for improving the performance of the
baseline model and we hypothesize that the task design
is important.

As our approach is both model and task agnostic, extending our
approach to other language understanding (NLU) tasks using
various deep learning architectures is a promising research
direction and in future, we would like to explore that direction.
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